

    
      
          
            
  
ARPA2 HandBook


This document details how you can get up to pace with the ARPA2 projects,
and how these hang together to form what we have come to call the
InternetWide Architecture.  The intention being, to give you an idea
of practical steps to take, and their relation to other work in this
large project.


The ARPA2 project is an umbrella for open source projects that implement
the open source and open networking ideals of a secure, private and
decentral Internet.  In addition, most projects aim to be accessible to
less technically inclined users, for example through hosting providers that
can install the ARPA2 software stack.

To achieve its ideals of control by users over their online presence,
the individual projects adhere to an integral design, known as the
InternetWide Architecture.  It derives its name from InternetWide.org [http://internetwide.org],
the overall project frontal used to collect funds from which some vital
ARPA2 projects are funded.

This is definately an ambitious project, not just for its goals but also
for its size and intended impact.  We are happy to see many people in the
technical community to respond with great enthousiasm to our attempt at
integrating the software that we all love to use, and to make it into a
whole that is hopefully easy to install, but more importantly, that is
simple enough to manage and use to be of value to everyday users who
do not happen to have a technical background.

We integrate security and privacy as integral pieces of the design (the
InternetWide.org architect is indeed a cryptographer) but we never
loose sight of practical usability of what this brings.  So expect great
assets like single-signon, realm-crossover and bring-your-own-identity...
and to see it combined with users, groups, roles, aliases, pseudonymity.

There’s no reason we can’t have it all... all it takes is a concerted effort!


Table of Contents


	Introducing InternetWide / ARPA2

	Phases of the InternetWide Project
	ARPA2 phase 1: SecureHub

	ARPA2 phase 2: IdentityHub

	ARPA2 phase 3: ServiceHub

	ARPA2 phase 4: SocialHub





	Getting Started
	Adopting PKCS #11 (standardised secret store)

	Adopting TLS Pool (splitting security from applications)

	Adopting SteamWorks (LDAP configuration dissemination)

	Adopting Kerberos (or await IdentiyHub)

	Adopt RADIUS or Diameter (for authorisation)

	Adopt modern Internet standards (in general)

	Embrace for more...













          

      

      

    

  

    
      
          
            
  
Introducing InternetWide / ARPA2


This is an introduction to the ideology that underpins the InternetWide
foundation and its handywork in the form of ARPA2 projects.


The big idea behind ARPA2 is to create an environment where you are in control.
Old-school hosting providers pioneered the idea by letting their users host
their own websites, email addresses and such, all under their own domain name.
This led to the so-called “LAMP stack”, an acronym of the underlying
technologies Linux-Apache-MySQL-PHP.

Since the introduction of this scheme, the Internet has seen a tremendous amount
of innovation.  But, as a result of cut-throat competition on the pricing of the
relatively standard LAMP stack, most hosting providers have had a hard time
keeping up.  In their place, we now see specialised services based on
centralised service hosting, much to the disadvantage of the privacy of
individual users.

With ARPA2, we hope to regain the level of individual control that we had in the
days of the LAMP stack, but without the limitations of just having web and
email.  This is not so strange in itself — chat and (video) telephony have long
been standardised and can be run anywhere, anytime.  All you need is an Internet
connection — in principle.

Many advanced computer users actually run these services for themselves, and are
successful at evading the centralised control from the few large silos that
reign todays Internet (and the privacy of its users).  Their level of
understanding however, is not available to anyone.  This is where hosting
providers used to step in.

The competition between hosting providers however, makes it difficult for them
to keep up with new developments.  They might have picked up on some
technologies, but there is no integratal adoption of things like chat and
telephony — technologies that are pretty vital in the protection of individual
freedom.  To step in, we are developing


	An architecture for the Internet, based on loosely connected domains, either
hosted privately or with a hosting provider.  We coined the name
InternetWide
Architecture [http://internetwide.org/blog/2016/06/24/iwo-phases.html] for
this, and you will read a lot about it in this handbook.

	An open source software distribution that supports both the technical-savvy
individual or company, and the hosting provider who simply wants to run a
modern software stack that integrates with other hosting providers’ domains,
among others because they follow the same architecture.  We coined the name
ARPA2 [http://arpa2.net] as the umbrella project name for our individual
development projects building towards the InternetWide Architecture.



The purpose is to achieve a lot of functionality, available to all, with choice
of service provider and always supportive of do-it-yourself.  A lot of excellent
software is already available in the open source community; the trick is to
identify and build any extensions that these components may need in order to fit
into the architecture.  In almost all cases, this comes down to adding a plugin
to which the applications are already pretty open, but for which nobody has
identified the need yet.  Our approach from an integral architecture helps us to
find precisely the itches that need to be scratched if we are to get all these
sublime components to work together as the concerted whole that leads to the
perfect end-user experience.  This is why we opted for the (admittedly grand)
name “InternetWide Architecture” for this design — it simply describes best what
we are aiming for.

The architecture is designed by a cryptographer, with serious attention for
matters of security and privacy.  The entire architecture is complex, because it
touches upon many matters, but as we worked on it, a rather clear image has
formed, fulfilling most or all of our hopes and dreams of getting to a mature,
decentralised Internet, where individuals and companies regain their
individuality with the security and privacy that they so much deserve to have.

As the project matures, we should see increasing numbers of users who feel less
obliged to “do what everyone does” and accept the gradual tightening grip of
silos on individual privacy.  We are not here to put those silos out of business
or disconnect them from users of the ARPA2 software distributio — we are only
here to offer users a choice between a silo or individual responsibility for
their online presence.





          

      

      

    

  

    
      
          
            
  
Phases of the InternetWide Project

The work on the InternetWide Architecture is split into four phases [http://internetwide.org/blog/2016/06/24/iwo-phases.html].


Status: The architecture of SecureHub and IdentityHub is crystal clear.
Coding of SecureHub is reaching a level where it is practically usable, the
work on IdentityHub has started.  Architecture of ServiceHub is relatively
clear, but only a few work items have been tackled.  SocialHub is developing
as an architecture, but is not completely clear at this point, although we
have a few resounding ideas standing by!



Continue Reading


	ARPA2 phase 1: SecureHub

	ARPA2 phase 2: IdentityHub

	ARPA2 phase 3: ServiceHub

	ARPA2 phase 4: SocialHub









          

      

      

    

  

    
      
          
            
  
ARPA2 phase 1: SecureHub


The SecureHub phase establishes a number of foundations for security.  In
spite of all the attention that has gone into our online security, much of
it does not really come together.


This is the first phase of ARPA2, and it is targeted at delivering a number of
security premises on which the later phases can build.  The end-user appeal of
this layer is not very direct, but without this the IdentityHub phase would not
be possible.

The main projects in SecureHub are:


	TLS Pool is a daemon that takes TLS out of applications.  The reasoning
is that application developers have another mind set (namely, a functional
drive) than security experts (who want to lock out anything dangerous) and
that these are best handled in different bits of software.  The TLS Pool is
a background program, with its own memory regions, in which it may juggle
credentials without the application ever needing to worry about it.  The
interface between TLS Pool and application talks of identities, in the form
of a domain name or a user under a domain name; integration with the TLS
Pool from an application’s perspective tends to take only an hour!

	SteamWorks distributes configuration information over LDAP.  This means
that central configuration (or, if you like the term, provisioning of
configuration) is possible.  This is useful in many situations where users
are less qualified to do so, and prefer to leave technical matters to a more
qualified person, be it a company’s administrator or a security service
provider.  Although SteamWorks makes it possible to centralise control, it
still is a matter of subscription from the client’s end — and therefore, a
choice made on the client machine.

	Kerberos is a very old security protocol, but it is also the best option
when dealing with centralised authentication.  So, if you are to centrally
manage accounts for users, groups and roles, as well as secure connections
to services and machines, then Kerberos is ideal.  This is the customary
choice in companies of any reasonable scale (they might call it Active
Directory, Samba, FreeIPA or Windows for Workgroups — but that still means
they use Kerberos for authentication).  In the IdentityHub phase, we will
turn to extensions that make Kerberos suitable as a mechanism for the
Internet as a whole and for card-swipe usage patterns; but in the SecureHub
phase, our aim is to use it locally, under our own domain or realm.

	TLS-KDH introduces Kerberos in TLS.  We do this in a modern way, where
we always incorporate the mechanisms for Forward Secrecy.  The integration
of Kerberos with HTTP or HTTPS is surprisingly weak, even if it is in high
demand.  Adding a strong Kerberos mechanism to TLS means that we can use it
in HTTPS, but also for STARTTLS-styled protocols like mail, chat and
telephony — the list of uses is virtually endless.  Given that the call for
TLS is resounding these days, and given the inefficiency of doing this with
X.509 certificates, it is good to know that our research has shown that
authentication with TLS-KDH is about 5000 times as efficient as when using
X.509 certificates.



After the SecureHub project, it is our hope to see a lot of spin-off work.  It
should not surprise anyone that TLS-KDH is integrated into the TLS Pool, so any
application using that has a great opportunity of hooking into the InternetWide
Architecture.

Proper integration of the TLS Pool does not only mean adding a generic TLS
tunnel around it (though one is delivered with the TLS Pool), because that
leaves the problem of communicating the authenticated identities of the two
sides to the wrapped program.  The best integration comes from a client program,
be it a web server or client or proxy, or perhaps mail tools.  When these start
to communicate TLS, they may hand off their socket to the TLS Pool, indicate
what is being expected about identities and tell the TLS Pool to start shaking
hands with the other side.  When done, the TLS Pool should respond with the
authenticated identities of the local and remote end, or none if they could not
be authenticated.  The program then continues over a new socket, speaking the
plaintext version of the protocol but resting assured that an external daemon
handles connection privacy and integrity in just the way the user likes to have
that handled.  The authenticated identities can henceforth be used in the
application program.

This use of the TLS Pool means that TLS-KDH can be used where it is supported —
a great gain in efficiency, and proponents of short-lived credentials might
argue that the security is also under much tighter control.  Future extensions
to Kerberos, such as realm crossover and pseudonymity will all be handled
automatically.  And when the IdentiyHub starts supporting centralised creation
of new identities, the TLS Pool will follow suit — and the application can
safely ignore any such thing.

We even intend to extend the TLS Pool idea at some point, to incorporate
alternatives to TLS, such as SSH and GSS-API based protocols.  This would lead
to a slightly modified flow in applications, but only during their call for a
handshake — after that they would once more have authenticated identities on
each end, and reliance on another program to handle privacy and authenticity.
This could give rise to alternative protocol elements such as STARTSSH and
STARTGSS — thereby allowing us to switch from TLS to another security protocol
if we feel so inclined.  In security, it is always good to have one to throw
away, just to help us instantly resolve security problems when the need arises.





          

      

      

    

  

    
      
          
            
  
ARPA2 phase 2: IdentityHub


The IdentityHub phase provides a management console for users, over which
they can create identities for users, groups, roles, pseudonyms.


This is the second phase of ARPA2, and it is targeted at delivering an
identity control cockpit, including every bit of cryptography that can
be used to prove those identities.  The IdentityHub supports Kerberos,
X.509 certificates and OpenPGP keys.

But that’s not all.  The IdentityHub hinges on a
Bring Your Own Identity [http://internetwide.org/blog/2015/04/22/id-2-byoid.html]
idea, where you have an identity under your local domain that you should
be able to bring anywhere you go online.  Well, anywhere supportive of
the InternetWide Architecture, of course.  Still, there are other
initiatives, and we seek to support those too, as well as possible
and wherever it is not harmful to end user privacy and security.

This means that anyone could potentially see who you are, and link your
behaviours throught that one identity.  In protection of your identity,
we therefore support the use of
aliases, pseudonyms, roles and groups [http://internetwide.org/blog/2015/04/23/id-3-idforms.html],
all helpful to control how you appear to those parties with which you
engage in online contact.

All this may sound straightforward enough, but let us assure you that
there are quite a few technical problems to be resolved.  Enough to
making it quite a challenge.  The reason we take this on is that we
have set ourselves the goal of redesigning the whole thing, without
limiting ourselves to the confines of an individual interest group;
history has shown [http://internetwide.org/blog/2015/04/21/id-1-intro.html]
that individual interests make it difficult to come to something
that benefits the Internet as a whole.

Are we arrogant for undertaking this?  Perhaps.
Do we stand a chance?  Certainly... we see many organisations, some
very large, gasp at the extent of what the IdentityHub wants to do,
and fall in love with it.  The general response comes down to
you are doing something that we hold dear... but if we did it,
we would be forced to confine ourselves to just this little corner.
It does seem that adding up all those individual corners leads pretty
much to what the IdentityHub does though, so we have good hopes for
broad support.

If anyone can do this, it will be the open source community!

Parties preparing to
adopt the IdentityHub
are advised to do the following:


	Use Kerberos for authentication

	Use the TLS Pool for authentication where possible

	Use Diameter or, failing that, use RADIUS for authorisation



The general naming scheme for IdentityHub will be the
DoNAI [http://donai.arpa2.net],
meaning domain-or-user-at-domain.
We have defined
Selectors [http://donai.arpa2.net/selector.html]
to be used as a kind of wildcard matches, and
Access Control Lists [http://donai.arpa2.net/acl.html]
to derive relationships.

In order to establish
realm crossover [http://realm-xover.arpa2.net],
meaning the mechanism that an identity from one security realm can authenticate
to another, we have found that the
Kerberos variety [http://realm-xover.arpa2.net/kerberos.html]
is the most probable road to success, chiefly because it only requires changes
in centrally controlled components.  Having said that, there are no reasons
to block things like
OpenID Connect [http://realm-xover.arpa2.net/openid.html]
or even
OAuth [http://realm-xover.arpa2.net/oauth.html]
but they are each facing problems – such as that everyone wants to play
the role of identity provider, while nobody wants to be on the trusting end
of the game.

It is however vital for personal control to be in charge of the identity
provider component.  If anything should be hosted by ourselves, it is the
cornerstone for deciding this session may enter on behalf of Charles –
and that is quadrupally true on an Internet where identity providers have
second thoughts about the privacy of their users.





          

      

      

    

  

    
      
          
            
  
ARPA2 phase 3: ServiceHub


The ServiceHub phase establishes a plugin mechanism for online services.
Given that one manages a domain name at a hosting provider of choice,
there may already be a set of services; but ServiceHub enables plugging
services provided by other, more specialised providers to appear under
the domain name.


This is the third phase of ARPA2, and it is targeted at making online
services pluggable.  The result is that a basic identity provider can host
the IdentityHub processes, perhaps with a few basic services, and that
anyone else on the Internet can offer plugins that can be added to these
domain names.  Doing so would enable the centrally managed users, groups,
roles, aliases and pseudonyms to be used with those plugins, so there is
an obvious need for some connection during such collaborations between
hosting providers.

We believe that
splitting the hosting market [http://internetwide.org/blog/2014/11/19/back-to-hosting.html]
is helpful to achieve specialisation.  This should be helpful in stopping
the cut-throat competition between hosting providers, who now all offer
more-or-less compatible packages.  On an Internet where it pays to
specialise, there should be more variety, more experiments and more
joy for everyone concerned.  It also leads to an Internet which is not
so easily overtaken by one central party that attempts to block out
other oferings.





          

      

      

    

  

    
      
          
            
  
ARPA2 phase 4: SocialHub


The SocialHub phase turns the Internet as a whole into a social network.
This is not a new idea in itself, but we have gotten used to thinking
social services are web-based and, as a result, located with a more-or-less
central provider.  This model has shown to be detrimental to our control
over online presence and privacy, so we turn it around.  Nobody minds a
web interface, but the heart of social networking should just be...
networking.  And by that, we mean at the level of the general
Internet Protocol, where everyone is an equal.


This is the first phase of ARPA2, and it is targeted at letting people
build social networks, in which they can exchange snippets of information
in a variety of ways, either over peer-to-peer communication or using more
classical mechanisms, but always founded on open protocols and/or open
standards.





          

      

      

    

  

    
      
          
            
  
Getting Started


How can you get on board?  What are the steps to gradually incorporate the
ARPA2 projects, and by that the InternetWide Architecture, into your
systems?


This chapter describes how you can get on board, and start to use the components
that we built for this ever-expanding software stack.  We do not target specific
use cases yet.  The steps described below are global, and reference more
detailed instructions (or indicate that this software is still being worked on).


Adopting PKCS #11 (standardised secret store)

In case you haven’t heard of PKCS #11, it is an API that is designed to conceal
secret and private keys from being observed, or exported in plain view.  These
objects are the cornerstones of cryptographic protection, and being unable to
replicate them is helpful to your security and privacy.


Status: There is a wide array of mature software choices for PKCS #11,
ranging from software, through simple USB keys, to high-end, hardened
bastions that would rather destroy your keys than release them to a physical
intruder.



	PKCS #11 is a foundation on which we built the TLS Pool.  We realise it is
an extra effort to install and get used to, but PKCS #11 adds great value
in terms of flexible security deployments.  Once it is setup and running, it
should not give any more headaches, other than to attackers after your keys.

	We advise you to get started with SoftHSMv2, because it is a sophisticated
and mature open source product.  If the need for hardware protection arises
later on, you merely swap the library that implements your PKCS #11 API
(and juggle keys as deemed necessary).

	If you want to “play” with PKCS #11, you may have a look at your mail or
web clients; they often support plugging in PKCS #11 libraries, on which
you can then store your local key material and certificates.  This is also
what the TLS Pool does; it stores private keys behind a PKCS #11 API and
links them to certificates that are stored in a local identity database.

	There is a standard for pkcs11: URIs [https://tools.ietf.org/html/rfc7512]
which can describe either tokens or objects (such as keys, certificates, or
data) on that token.  This is not a location but an identifier, in the
sense that it provides selection criteria for a token and, given extra
parameters, objects on a token.  You will need to supply your software with
a library that implements the PKCS #11 API along with each URI.

	When you get started with the TLS Pool, we will talk you through the steps
of using PKCS #11 for that purpose.  These steps will assume SoftHSMv2 and
GnuTLS tooling, but you can easily vary if you feel a need; PKCS #11
solutions are fairly exchangeable, other than that their implemented
security level varies drastically.

	When we initiate the IdentityHub, we are going to manage PKCS #11 at a
(paid to be trustworthy) hosting provider — or perhaps on your Raspberry Pi
at home — and we will then introduce Remote PKCS #11.  This will allow you
to share your identities anywhere you are, including on your mobile device.
And yes, we have concerned ourselves with the security of that design!






Adopting TLS Pool (splitting security from applications)

The TLS Pool is the piece of software that takes security knowledge out of
applications.  It relies on PKCS #11 and, in part because of that, is not easy
to get started.  Once it is running however, you should find that it easily
“clicks in” and grants you a lot of control over security, in one place for all
the applications concerned.  As a matter of fact, you can even centralise
management.


Status: The TLS Pool works well on servers, but using it on client
platforms is a bit awkward.  This is mostly due to lacking multi-user
support [https://github.com/arpa2/tlspool/issues/36], but if your client is
in practice a single-user platform you should be able to use the TLS Pool
quite nicely.



	The first thing to do is perhaps to start using the TLS Pool, and use it
from the applications that you rely on.

	If your server does not rely on authenticated client identities, than it may
suffice to simply use the TLS Tunnel distributed with the TLS Pool.  This
tool can even use simple scripts to talk a remote server into STARTTLS
mode, and then proceed as before.

	If your client wants to use the TLS Pool to authenticate to a server, it may
also suffice to use the TLS Tunnel.  It will authenticate the client, so
this may even add value to non-TLS applications.  For instance, you could
direct your mail client to a locally hosted SMTP server, which is then
redirected by the TLS Tunnel, authenticating with STARTTLS and using
credentials kept in the TLS Pool.  Dependent on the server side, this may be
helpful or confusing to client authentication; the ideal situation being to
rely on SASL EXTERNAL authentication, referring back to an identity that
was authenticated over TLS.

	Use of the TLS Pool for authentaction by applications is not something that
the ARPA2 project can directly influence, but it may help if you ask the
producers of your favourite pieces of software to look into it — or if you
organise the needed patches.  It has been shown repeatedly that the addition
of the TLS Pool to an existing application takes about an hour for someone
well-versed in the application’s inner structure!

	If you have an application that has “add TLS” on the TODO list, think no
longer — adopt the TLS Pool.  It will save you a lot of anxiety about
security configuration, where to load certificates from and how to handle
the accompanying private keys in a secure manner.  All this is delegated to
the TLS Pool.  In fact, it will implement many more things than you would
ever be likely to add — and you get it all for free.






Adopting SteamWorks (LDAP configuration dissemination)

The idea of SteamWorks is to offer you with a configuration backbone.


Status: At this point, SteamWorks is in its infancy.  A few test setups
have shown to work though.



	SteamWorks is founded on LDAP, for which we hope to simplify management
through a front-end that takes care of the intricacies of running a complex
daemon.  SteamWorks uses LDAP SyncRepl as a subscription mechanism for
near-instant dissemination of configuration changes to those clients that
have subscribed.  The design of SteamWorks incorporates components that help
to isolate networks from connectivity problems to remote parts of the
Internet.

	SteamWorks delivers configuration information to backends, using
configuration scripts to determine what information should be taken from
where in LDAP, and how to pass it on to those backends.  The backends will
then store the information in a form suitable for the targeted software
system.

	As a first example, the TLS Pool has a backend for SteamWorks, permitting
the complexities of TLS configuration to be made centrally, for instance by
an administrator.  This releases individual users from the concerns that
come with the specialised domain of security.  As soon as a security problem
pops up, a change can be made in the SteamWorks configuration and subscribed
clients would virtually immediately pickup the change and process it
locally, is the underlying idea.






Adopting Kerberos (or await IdentiyHub)

We advise you to start using Kerberos as your central authentication mechanism.


Status: Kerberos is very robust, very secure and very well integrated
into software.  Setting it up is not always easy, but once setup life
simplifies to a single-signon system.  Note that the one weak point at this
time is support for HTTPS — and that we are working on resolving that
generically, by adding Kerberos to TLS in the form of TLS-KDH.



	Kerberos offers “single sign-on”, which means that you login once (usually
at the start of the day) and continue to use the initial credential received
for hours to go.  You need to do no further logins, as any new service
ticket needed during those hours are derived from your initial start-of-day
credential.  On top of that, Kerberos is very fast, because it is built on
symmetric-key algorithms such as AES-256.

	Kerberos is integrated into many protocols, including SMTP, IMAP, LDAP and
SSH.  You will be pleasantly surprised by how much faster your SSH logins
will be with Kerberos, compared to using the SSH Agent or mundane/manual
password entry.

	Be aware that we will offer Kerberos as part of the upcoming project phase,
IdentityHub.  This means that you should think ahead if you want to setup a
quick test platform to cover the time until we get there, or that you prefer
to wait a while.  Be advised that setting up the KDC is the most difficult
part of running Kerberos, which is why we will “web-wrap” it for less
technical domain owners, but a straightforward setup on a single node is
quite doable for an experienced administrator.

	Be advised that the IdentityHub works towards automated realm crossover
between Kerberos realms, in a way that allows clients of on realm to
authenticate to another, even if they had not been introduced before.  The
technique for doing so will likely derive its security from DANE.  Note that
authentication does not imply authorisation: you may be able to prove to
anyone who you are, but the question remains if you are welcome to use any
given service.






Adopt RADIUS or Diameter (for authorisation)

The RADIUS system and its follow-up Diameter are widely used to centralise
authentication, authorisation and accounting within a domain, or secure realm.
Although authentication (who is it?) and authorisation (what may he do?) tend to
blur in these systems, they will answer questions like Can Jack access the
files of Joe? with Yeah or Nay.


Status: RADIUS is very stable, and in principle, so is Diameter.  The
latter is less often used, but has a few clever extensions.  When we come to
the ServiceHub, we will standardise on Diameter.  Mature systems exist to
connect RADIUS and Diameter, so that should not constrain your local choice.
New systems should probably consider Diameter, and break with the somewhat
overdue tradition of RADIUS.



	As part of IdentityHub, we will support a flexible authorisation framework.
It is assumed that a user’s identity is authenticated, and that its access
to a resource is questioned.  A few examples are:
	Can this user [http://donai.arpa2.net] act on behalf of that user,
group, role, alias or
pseudonym [http://internetwide.org/blog/2015/04/23/id-3-idforms.html]?

	Is this user [http://donai.arpa2.net] acceptable to the access control
list [http://donai.arpa2.net/acl.html] for the given
service [http://donai.arpa2.net/selector.html]?





	We have not standardised the method of asking these questions yet.  This is
in part due to our desire to retain privacy as much as we can; when we setup
the SecureHub, we would prefer to not spread all information to each
service, but hopefully answer little more than these direct questions in a
way that they can easily cache.  And of course that also introduces concerns
of efficiency of any such caches and the expediency of updates to them.






Adopt modern Internet standards (in general)

In our work, we are going to make a few radical assumptions about support for
modern Internet protocol.  Some things simply cannot be done well on IPv4
(thanks to NAT traversal nightmares) and some things are simply not secure
without mechanisms like DNSSEC.


Status: Most of these technologies have been around for quite a while,
and their software has been well tested.  You may find that you are still an
early adopter, although you would also be surprised how well the uptake of
various modern developments has been in practice.



	Adopt IPv6.  Really, when it comes to end-to-end communication you do not
want to be dealing with NAT traversal issues.  Ask any self-acclaimed SIP
expert about their fondness of NAT and they will show you their best
daunting-nightmare grinn.  We are going to require IPv6 on various parts
of our design, simply because it evades problems that are now in the way of
progress, and because the inherent complexities of NAT traversal lead to
complex code, complex networking problems and poor end-user experiences.

	Adopt DNSSEC.  Start signing your zones, and validate your DNS queries.  We
will require DNSSEC for a number of follow-up projects, for example to
validate DANE entries, and perhaps SSHKEY records in DNS.  With DNSSEC in
place, the DNS is a reliable database of domain-specific information;
without DNSSEC, it cannot be used as a foundation for anything that is at
risk of being abused.

	Adopt SCTP.  This protocol sits next to UDP and TCP, and can actually behave
like either.  In addition, it can run multiple streams at the same time.
Particularly interesting is its support of a reliable, but not necessarily
in-order delivery of frames, which happens to be very useful for systems
that run on UDP to avoid head-of-line blockage but that need to resend at
the application level to achieve a reliable service.  We will require SCTP
for several of our services, among others for the ServiceHub project where
it will be used as a sort of umbilical cord between hosting providers.
Chances are that SIP infrastructure will also require SCTP, in support of
longer messages that can then include security information.

	Be advised that the IdentityHub and ServiceHub will export DANE records for
services.  Research by SURFnet had led to the conclusion that the spread
administration of DNS, certificates and servers makes DANE a potentially
fragile system, but automation can be helpful to overcome that.






Embrace for more...

The InternetWide Architecture encompasses much more.  As this project advances,
we will update this page with more steps that you can take.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/minus.png





_static/comment-close.png





_static/comment-bright.png





_static/file.png





_static/plus.png





_static/comment.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		ARPA2 HandBook


        		Introducing InternetWide / ARPA2


        		Phases of the InternetWide Project
          
          		ARPA2 phase 1: SecureHub


          		ARPA2 phase 2: IdentityHub


          		ARPA2 phase 3: ServiceHub


          		ARPA2 phase 4: SocialHub


          


        


        		Getting Started
          
          		Adopting PKCS #11 (standardised secret store)


          		Adopting TLS Pool (splitting security from applications)


          		Adopting SteamWorks (LDAP configuration dissemination)


          		Adopting Kerberos (or await IdentiyHub)


          		Adopt RADIUS or Diameter (for authorisation)


          		Adopt modern Internet standards (in general)


          		Embrace for more...


          


        


      


    
  

_static/up.png





_static/up-pressed.png





